Have you ever wondered what it might feel like to float weightless in space? One way to try it out is to fly on a special aircraft that astronauts use to train for their trips to space. Both NASA and the Russian Space Agency have been flying these for years. The way this is accomplished is to fly to a high altitude, drop down to gain speed, and then start a large parabolic path up in the sky. For a time ranging from 10 to 20 seconds, along the top part of the parabolic flight, an environment simulating zero gravity is created within the plane. This effect can cause some nausea in the participants, giving rise to the name “Vomit Comet”, the plane used by NASA for zero-G parabolic training flights. Currently there is a private company that will sell you a zero-G ride, though it is a bit expensive.

This lab will have you take a look at the parabolic path to try to determine the maximum altitude the plane reaches. First, you will work with data given about the parabola to come up with a quadratic model for the flight. Then you will work to find the maximum value of the model. Now for the data:

<table>
<thead>
<tr>
<th>Time t in seconds</th>
<th>2</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height h in feet</td>
<td>23645</td>
<td>32015</td>
<td>33715</td>
</tr>
</tbody>
</table>

To find the quadratic model, you will be plugging the data into the model $h = at^2 + bt + c$. The data points given are just like x and y values, where the x value is the time t in seconds and the y value is the altitude h in feet. Plug these into the model and you will get equations with a, b and c.
Part 1: Write your 3 by 3 system of equations for a, b, and c.

\[
\begin{align*}
4a + 2b + c &= 23645 \quad \text{(1)} \\
400a + 20b + c &= 32015 \quad \text{(2)} \\
1600a + 40b + c &= 33715 \quad \text{(3)}
\end{align*}
\]

Part 2: Solve this system. Make sure to show your work.

\[
\begin{align*}
400a + 20b + c &= 32015 \quad \text{(2) - (1)} \\
-4a - 2b - c &= -23645 \\
396a + 18b &= 8370 \quad \text{(4)}
\end{align*}
\]

\[
\begin{align*}
1600a + 40b + c &= 33715 \quad \text{(3) - (2)} \\
-400a - 20b - c &= -32015 \\
1200a + 20b &= 1700 \quad \text{(5)}
\end{align*}
\]

\[
\begin{align*}
3960a + 180b &= 83700 \quad \text{(4) \times 10 - (5) \times 9} \\
-10800a - 180b &= -15300 \\
-6840a &= 68400 \quad \text{(Simplify)} \\
a &= -10
\end{align*}
\]

\[
\begin{align*}
1200(-10) + 20b &= 1700 \quad \text{(Substitute a into (5) and Simplify)} \\
-12000 + 20b &= 1700 \\
20b &= 13700 \\
b &= 685
\end{align*}
\]

\[
\begin{align*}
4(-10) + 2(685) + c &= 23645 \quad \text{(Substitute a and b into (1) and Simplify)} \\
1340 + c &= 23645 \\
c &= 22315
\end{align*}
\]

\[
\begin{align*}
a &= -10 \\
b &= 684 \\
c &= 22315
\end{align*}
\]
Part 3: Using your solutions to the system from part 2 to form your quadratic model of the data.

\[h = -10t^2 + 685t + 22315 \]

Part 4: Find the maximum value of the quadratic function. Make sure to show your work.

\[-b / 2a = -685/2(-10) = 34.25\]

\[H = -10(34.25)^2 + 685(34.25) + 22315 \]
(Substitute into formula and Simplify)

\[H = -11730.625 + 23461.25 + 22315 \]

\[H = 34045.625 \]

Part 5: Sketch the parabola. Label the given data plus the maximum point. A good way to start labeling your axes is to have the lower left point be (0, 20000)

<table>
<thead>
<tr>
<th>Time</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>23645</td>
</tr>
<tr>
<td>10</td>
<td>28165</td>
</tr>
<tr>
<td>20</td>
<td>32015</td>
</tr>
<tr>
<td>30</td>
<td>33865</td>
</tr>
<tr>
<td>34.25</td>
<td>34045.625 (Max)</td>
</tr>
<tr>
<td>40</td>
<td>33715</td>
</tr>
<tr>
<td>50</td>
<td>31565</td>
</tr>
<tr>
<td>60</td>
<td>27415</td>
</tr>
</tbody>
</table>
Part 6: Reflective Writing.

Did this project change the way you think about how math can be applied to the real world? Write one paragraph stating what ideas changed and why. If this project did not change the way you think, write how this project gave further evidence to support your existing opinion about applying math. Be specific.

This project made me think about how simple ideas or simple examples can then be transferred into larger more complex actions. What I mean by that is that during this project I was thinking about how the teacher was throwing a ball in class and she was saying that every time that she threw the ball she was making a parabola; this example I believe was simple enough for everyone to understand. And I believe if people are able to open up their imagination they can easily take that example and mentally expand it from the classroom to the miles and heights of an airplane and by doing so a person should be able to understand how parabolas and the quadratic formula can be used within real complex live scenarios.